2D Arrays — Successors FRQ

AP® COMPUTER SCIENCE A
GENERAL SCORING GUIDELINES

Apply the question assessment rubric first, which always takes precedence. Penalty points
can only be deducted in a part of the question that has earned credit via the question rubric.
No part of a question (a, b, ¢) may have a negative point total. A given penalty can be
assessed only once for a question, even if it occurs multiple times, or in multiple parts of
that question. A maximum of 3 penalty points may be assessed per question.

1-Point Penalty

(w) Extraneous code that causes side effect {e.g. printing to output, incorrect precondition
check)

(x) Local variables used but none declared

(y) Destruction of persistent data (e.g., changing value referenced by parameter)

Mr Lee’s 1-Point Penalty:
¢ Inefficient, “long winded” or “messy” difficult to understand code which takes longer
to write than standard more efficient solutions.
o In anexam you need to save time by writing quickly hand writable efficient
code which is easy for AP readers to understand.

No Penalty
¢ Extraneous code with no side effect (e.g., precondition check, no-op)
e Spelling/case discrepancies where there is no ambiguity*
e Local variable not declared provided other variables are declared in some part
¢ Keyword used as an identifier
¢ Common mathematical symbols used for operators (x & ~ <= =<> #)
e [Jvs. ()
¢ Extraneous [] when referencing entire array
e [i,7j]insteadof [1] (7]
o —instead of —and vice versa
s Missing / } where indentation clearly conveys intent
e Missing () around i f or while conditions

* Spelling and case discrepancies for identifiers fall under the "No Penalty" category only if
the correction can be unambiguously inferred from context; for example, "total" instead of
“tot!". As a counterexample, that if the code declares "int G=99, g=0; ", then uses "while (G
< 10} "instead of "while { g < 10), the context does not aflow for the reader to assume the
use of the lower-case variable.

2D Arrays — Successors FRQ

This question involves reasoning about a two-dimensional (2D) array of integers. You will
write a code segment to process a 2D integer array that contains consecutive values. Each of
these integers may be in any position in the 2D integer array. For example, the following 2D
integer array with 3 rows and 4 columns contains the

integers 5 through 16, inclusive.

2D int array

0 1 2 3
0 15 5 9 10
1 12 16 11 6
2 14 8 13 7

Write a code segment that takes an 1 nt value num and an 2D int array intArrand
prints the position of num in intArr. If num is not an element of 1 ntArr, the code
segment prints nulJ.

For example, assume that array 2 ntArris as shown above.
e |If num = 8the code segment should print the “Z, 1” because the value 8 appears in
intArr atrow 2 and column 1.

e |Ifnum = 17 the codesegment should print null because the value 17 does not
appearin intArr.

Complete the code segment below.

/** Prints the position of num in intArr;
* prints null if no such element exists in intArr.
* Precondition: intArr contains at least one row.
*/
int num = 8;
intf{][] intArr = {{15, 5, 2, 10},
(12, 16, 11, &},
{14, 8, 13, 7}}s

